Abstract

The Saccharomyces cerevisiae viruses are noninfectious double-stranded RNA viruses whose segments are separately encapsidated. A large viral double-stranded RNA (L1; 4580 base pairs) encodes all required viral functions. M1, a double-stranded RNA of 1.9 kilobases, encodes an extracellular toxin (killer toxin) and cellular immunity to that toxin. Some strains contain smaller, S, double-stranded RNAs, derived from M1 by internal deletion. Particles containing these defective interfering RNAs can displace M1 particles by faster replication and thus convert the host strain to a nonkiller phenotype. In this work, we report the development of an assay in which the expression of S plus-strand from an inducible plasmid causes the loss of M1 particles. This assay provides a convenient method for identifying in vivo cis-acting sequences important in viral replication and packaging. We have mapped the sequence involved in interference to a region of 132 base pairs that includes two sequences similar to the viral binding site sequence previously identified in L1 by in vitro experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.