Abstract

Vitamin D insufficiency is still a concern in countries where there is no routine food supplementation, such as France. A low vitamin D status is clearly associated with an increased risk of fracture in the elderly, but the long-term consequences of latent vitamin D insufficiency in young people and adults are not known. We fed 26 growing pigs a high calcium diet (1.1%) with a 1000 IU cholecalciferol/kg diet (controls), or without vitamin D (0D) for 4 months. We then analyzed the overall impact of low vitamin D status on osteotropic hormones (calcitriol and immunoreactive parathyroid hormone), plasma markers of bone remodeling (alkaline phosphatase [ALP] activity, carboxyterminal propeptide of type I procollagen [PICP], osteocalcin, hydroxyproline), whole bone parameters (ash content, bending moment), histomorphometry, and the populations of marrow osteoblastic and osteoclastic precursors by ex vivo cultures. The fall in plasma 25-dihydroxyvitamin [25(OH)D] in the 0D pigs indicated severe depletion of their vitamin D stores. However, they remained normocalcemic, were mildly hyperparathyroid after 2 months of vitamin D deprivation, and showed only a slight decrease in plasma calcitriol. The bone mineral content and bending moment of metatarsals decreased and they had increased osteoblastic (+59%, p < 0.05 0D vs. controls) and osteoclastic (+31%, p < 0.1 0D vs. controls) surfaces. This was not paralleled by increased bone turnover, because plasma hydroxyproline and ALP were unchanged and PICP and osteocalcin were decreased. The adherent fraction of bone marrow cells showed a great increase in the number of total stromal colony-forming units (CFU-F; +93%, p < 0.05 0D vs. controls) and in the percent of ALP + CFU-F (+58%, p < 0.01 0D vs. controls) in cultures from 0D pigs. More tartrate-resistant acid phosphatase-positive (TRAP +) multinucleated cells were generated in cultures of nonadherent marrow cells from 0D pigs, and the area of resorption was 345% greater than in controls. Thus, vitamin D deprivation caused only moderate hormonal changes in growing pigs fed a high-calcium diet, but affected their bone characteristics and greatly enhanced the pool of osteoblasts and osteoclasts by stimulating the commitment of their precursors in bone marrow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.