Abstract

Here we report the antiretroviral activity of the experimental nucleoside reverse transcriptase inhibitor (NRTI) compound stampidine in cats chronically infected with feline immunodeficiency virus (FIV). Notably, a single oral bolus dose of 50 or 100 mg of stampidine per kg resulted in a transient >/=1-log decrease in the FIV load of circulating peripheral blood mononuclear cells in five of six FIV-infected cats and no side effects. A 4-week stampidine treatment course with twice-daily administration of hard gelatin capsules containing 25 to 100 mg of stampidine per kg was also very well tolerated by cats at cumulative dose levels as high as 8.4 g/kg and exhibited a dose-dependent antiretroviral effect. One of three cats treated at the 25-mg/kg dose level, three of three cats treated at the 50-mg/kg dose level, and three of three cats treated at the 100-mg/kg dose level (but none of three control cats treated with placebo pills) showed a therapeutic response, as evidenced by a >/=1-log reduction in the FIV load in peripheral blood mononuclear cells within 2 weeks. The previously documented in vitro and in vivo antiretroviral activity of stampidine against primary clinical human immunodeficiency virus type 1 isolates with genotypic and/or phenotypic NRTI resistance, together with its favorable animal toxicity profile, pharmacokinetics, and in vivo antiretroviral activity in FIV-infected cats, warrants further development of this promising new NRTI compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.