Abstract

In crustaceans, it has been suggested that specific protection against pathogens could be triggered by vaccines and biological response modifiers; although the specific mechanisms of this protection have not been clarified yet. In the crayfish Cherax quadricarinatus, a humoral lectin (CqL) binds its own granular hemocytes through a specific receptor (CqLR) and increases the production of reactive oxygen species (ROS). In the present study, we challenged in vivo crayfishes with immunostimulants, β-glucan (200 μg/kg) or LPS (20 μg/kg), and identified the participation of cellular and humoral mechanisms. The stimulants generated a complex modification in the total hemocytes count (THC), as well as in the proportion of hemocyte subsets. At 2 h after the challenge, the largest value in THC was observed in either challenged crayfishes. Furthermore, at the same time, hyaline hemocytes were the most abundant subset in the hemolymph; after 6 h, granular hemocytes (GH) were the most abundant hemocyte subset. It has been observed that a specific subset of GH possesses a CqLR that has been related to ROS production. After 2 and 6 h of the β-glucan challenge, a significant increase in CqLR expression was observed in the three circulating hemocyte subsets; also, an increased expression of CqL was detected in a granular hemocytes sub-population. After 2 and 6 h of stimulation, the specific activity of the serum lectin challenged with β-glucan was 250% and 160% higher than in the LPS-treated-group, respectively (P < 0.05). Hemocytes from challenged crayfishes were stimulated ex vivo with CqL, ROS production was 180% higher in hemocytes treated with β-glucan + CqL than in hemocytes treated with LPS + CqL (P < 0.05). The results evidence the effectivity of immune stimulators to activate specific crayfish defense mechanisms, the participation of CqL and its receptor (CqLR) could play an important role in the regulation of immune cellular functions, like ROS production, in Cherax quadricarinatus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.