Abstract

BackgroundAs strawberries are susceptible to somaclonal variation when propagated by tissue culture techniques, it is challenging to obtain the true-to-type plants necessary for continuous production of fruits of stable quality. Therefore, we aimed to develop an in vitro propagation method for the production of true-to-type plants of five different strawberry cultivars from meristems cultured in media containing different concentrations of kinetin (Kn).ResultsFor all the cultivars, shoot induction was successful only in the meristems cultured in the medium without Kn and the medium containing 0.5 mg L−1 Kn. The shoots obtained from explants cultured in media supplemented with 0.5 mg L−1 Kn exhibited better plant growth parameters than those cultured in media without Kn and were genetically stable when compared with conventionally propagated plants for all the cultivars. Vegetative and sexual characters and fruit quality attributes observed in the plants derived from meristems cultured on 0.5 mg L−1 Kn and the conventionally propagated plants were not significantly different when grown for three continuous growing seasons under greenhouse conditions.ConclusionThe culture of meristems in the medium containing 0.5 mg L−1 Kn is suitable for the efficient propagation of true-to-type plants of different strawberry cultivars and continuous production of fruits with stable quality. Hence, we expect that the method presented in this study will be helpful for the commercial production of true-to-type plants generated in vitro for other strawberry cultivars.

Highlights

  • As strawberries are susceptible to somaclonal variation when propagated by tissue culture techniques, it is challenging to obtain the true-to-type plants necessary for continuous production of fruits of stable quality

  • Shoot induction was only observed in explants cultured on the medium containing 0.5 mg L−1 Kn and in the control

  • Percentage shoot regeneration, the number of shoots, leaves, and roots per explant derived from explants cultured on the medium containing 0.5 mg L−1 Kn was significantly higher than that derived from the control (Fig. 3a–c, Table 1), indicating that the addition of 0.5 mg L−1 Kn provides optimal conditions for successful in vitro propagation of strawberry cultivars through meristem culture

Read more

Summary

Introduction

As strawberries are susceptible to somaclonal variation when propagated by tissue culture techniques, it is challenging to obtain the true-to-type plants necessary for continuous production of fruits of stable quality. We aimed to develop an in vitro propagation method for the production of true-to-type plants of five different strawberry cultivars from meristems cultured in media containing different concentrations of kinetin (Kn). Previous studies reported that the application of low concentrations of cytokinins [16, 17], a reduced number of subcultures during the proliferation stage [18, 19], and the choice of genotypes [20, 21] are critical factors that should be considered when obtaining true-to-type plants. In vitro shoot regeneration of five different cultivars was investigated by culturing the meristems in media containing different concentrations of kinetin (Kn). Vegetative traits, sexual characters, and fruit attributes of the meristem-derived and conventionally propagated plants were compared during three continuous growing seasons under greenhouse conditions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.