Abstract

The present study aimed to investigate whether salidroside can induce differentiation of rat mesenchymal stem cells (rMSCs) towards hepatocytes in vitro and the mechanism of hepatic differentiation of rMSCs. rMSCs were subject to hepatic differentiation. One, two and three weeks later, the expression of alpha fetoprotein (AFP) and albumin (ALB), cytochrome P450 (CYP450)-dependent activity and inducibility, cellular uptake of low density lipoprotein (LDL) and urea synthesis were assessed and the hepatic differentiation of rMSCs was evaluated. In order to unravel the mechanism of hepatic differentiation of rMSCs in vitro, inhibitors of extracellular regulated kinase1/2 (ERK1/2), phosphatidylinositol 3-kinase (PI3K) and p38 were applied. When the process of hepatic differentiation was completed, special proteins of hepatic differentiation were detected and blocking of inhibitors was evaluated. Salidroside significantly induce differentiation of rMSCs towards hepatocytes. Differentiated rMSCs have typical functional hepatic characteristics. The results also showed that the ERK1/2 and PI3K signalling pathways play important roles in the regulatory effects of salidroside on hepatic differentiation of rMSCs and are involved in cell fate determinations, while the p38 signalling pathway does not. Salidroside can induce differentiation of rMSCs towards hepatocytes in vivo, and the ERK1/2 or PI3K signalling pathway underlie the process of hepatic differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.