Abstract

Osteocytes are considered the primary mechanical sensor in bone tissue and orchestrate the coupled bone remodeling activity of adjacent osteoblast and osteoclast cells. In vivo investigation of mechanically induced signal propagation through networks of interconnected osteocytes is confounded by their confinement within the mineralized bone matrix, which cannot be modeled in conventional culture systems. In this study, we developed a new model that mimics this in vivo confinement using gelatin methacrylate (GelMA) hydrogel or GelMA mineralized using osteoblast-like model cells. This model also enables real-time optical examination of osteocyte calcium (Ca2+) signaling dynamics in response to fluid shear stimuli cultured under confined conditions. Using this system, we discovered several distinct and previously undescribed patterns of Ca2+ responses that vary across networks of interconnected osteocytes as a function of space, time and connectivity. Heterogeneity in Ca2+ signaling may provide new insights into bone remodeling in response to mechanical loading. Overall, such a model can be extended to study signaling dynamics within cell networks exposed to flow-induced mechanical stimuli under confined conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.