Abstract

Membrane damage via the Maillard reaction products of half-fin anchovy hydrolysates and glucose (designated as HAHp(9.0)-G MRPs) was evaluated using an in vitro Escherichia coli (E. coli) model. The incubation of HAHp(9.0)-G MRPs led to a significant increase in outer and inner membrane permeability. Furthermore, membrane integrity was seriously destroyed, as observed by scanning electron microscopy and indicated by the decreased fluorescence signal of 4',6-diamidino-2-phenylindole stain. Interestingly, HAHp(9.0)-G MRPs induced significant hydrogen peroxide (H2O2) production in E. coli after 3 h of incubation, which contributed to the antibacterial activity of HAHp(9.0)-G MRPs. As one of the reactive oxygen species, excess H2O2in vivo might impair the antioxidant balance. Therefore, the oxidative status of healthy mice after short-term intake of HAHp(9.0)-G MRPs was investigated. After the administration of HAHp(9.0)-G MRPs at low dose (0.1 g per kg per day body weight) and high dose (1.0 g per kg per day body weight) for 14 days, the body weight of female mice decreased, and the body weight of male mice increased. However, the administration of HAHp(9.0)-G MRPs did not affect the hepatic antioxidant defense in either female or male mice. Some positive responses, like increased superoxide dismutase (SOD) and glutathione peroxidase (GPx) as well as decreased lipid peroxidation (LPO) content, were detected, especially in liver. Though the decrease in catalase activity indicated that the glycation compounds from HAHp(9.0)-G MRPs might be absorbed in vivo, the lower SOD/GPx ratios of HAHp(9.0)-G MRPs-fed groups than those of the normal groups also suggested that the administration of HAHp(9.0)-G MRPs could reduce LPO stress in mice. Our results suggest that a higher antioxidant status could be generated in the healthy animals after fed with HAHp(9.0)-G MRPs for 14 days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.