Abstract

A mucoadhesive drug delivery system can improve the effectiveness of a drug, allowing targeting and localization at a specific site. According to this assumption, γ-irradiation as eco-friendly technique was employed to synthesize (acrylic acid/polyethylene glycol) copolymer hydrogel of different compositions. Silver nanoparticles were prepared within (acrylic acid/polyethylene glycol) hydrogel network by means of in situ reduction of silver nitrate using sodium borohydride as a reducing agent. Swelling characteristics in distilled water and simulated saliva solution were studied as a function of copolymer composition and preparation irradiation dose. (Acrylic acid/polyethylene glycol) hydrogels and their developed Agº nanocomposites have been characterized using scanning electron microscope, thermogravimetric analysis, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Mucoadhesive strength as well as self-disinfection efficiency expressed as antibacterial activity against different bacterial strains was evaluated. Propranolol HCl as model drug was used to evaluate the potential efficiency of the obtained (acrylic acid/polyethylene glycol)-Agº nanocomposites as mucoadhesive drug carrier. The obtained results showed that the (acrylic acid/polyethylene glycol)-Agº nanocomposites show a promising self-disinfection property, and the propranolol HCl–loaded composites were able to deliver the loaded drug in a sustainable manner that lasts for about 600 min.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.