Abstract

Wireless active implantable medical devices (AIMDs) can be an alternative for overcoming the drawbacks faced with superficial and percutaneous technologies. However, current AIMDs require bulky and rigid components for powering, hampering their miniaturization. AIMDs based on power transfer by volume conduction do not need these voluminous parts, allowing the development of thread-like devices that could be used for distributed stimulation and sensing of the neuromuscular system. In this paper, we present an in vitro evaluation of a protocol and an architecture for bidirectional communications in networks of injectable wireless implants powered and controlled by volume conduction. The wireless prototypes were successfully addressed from the external systems, and end-to-end bidirectional communication was performed at 256 kbps with a success rate of 87%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.