Abstract

The effects of lead acetate on respiration in cerebral and cerebellar mitochondria from immature and adult rats were studied polarographically. With all substrates low lead concentrations produced an increase in respiration. Higher concentrations produced an inhibition of both this lead-induced respiration and ADP-dependent (State 3) respiration. Lead-induced respiration required inorganic phosphate and was inhibited by oligomycin, suggesting a coupling to oxidative phosphorylation. Inhibition of respiration was produced by much lower lead concentrations with NAD-linked citric acid cycle substrates than with succinate or alpha-glycerophosphate. In partially disrupted mitochondria, NAD-linked substrate oxidation was inhibited at lead concentrations which did not affect NADH oxidation. Thus, in brain mitochondria the NAD-linked dehydrogenases, located in the matrix space, were more sensitive to inhibition by lead than were inner membrane enzymes. All in vitro lead effects on mitochondrial respiration were comparable in cerebral and cerebellar mitochondria isolated from both immature and adult rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.