Abstract

Dogwood anthracnose, caused by the fungus Discula destructiva Redlin, is a severe disease of flowering dogwood (Cornus florida L.) and Pacific dogwood (C. nuttallii Aud.). Disease control is inadequate in nurseries and landscapes and absent in the forest, and resistant cultivars are not commercially available. The ability to select tissues insensitive to culture filtrates from D. destructiva in vitro offers a novel and important approach for the selection of dogwood genotypes that are resistant to or tolerant of this devastating fungus. Embryo-derived dogwood callus cultures were established on Murashige and Skoog medium amended with benzyladenine (BA) and either 2,4-dichlorophenoxyacetic acid (2,4-D) or naphthaleneacetic acid (NAA). Selection for insensitivity to D. destructiva metabolites was done by placement of individual cultures on media amended with progressively higher concentrations of a partially purified culture filtrate (PPCF) containing lowmolecular-weight compounds. Following this selection process, cultures were challenged in a dose-response format with PPCF to determine whether the sensitivity of the callus to the culture filtrate had changed. During the selection period, the fresh weight of callus grown on medium containing 2,4-D and amended with PPCF was always less than that of callus grown on medium amended with the same concentration of potato-dextrose broth (PDB, negative control). Fresh weight of callus was greater on medium containing NAA amended with PPCF than on medium with the same concentration of PDB. Callus selected in the presence of NAA showed decreased sensitivity to toxic metabolites at higher concentrations of culture filtrate. The in vitro system described may assist in the identification of disease-resistant germplasm important to the long-term survival of flowering dogwood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.