Abstract

An Mg-Zn-Ca-Y alloy operative clip was developed to overcome the drawbacks of the Ti clips such as ion dissolution inflammation, interference imaging diagnosis, and the potential harm that permanent retention brings to the patient. The structure optimization design of the hemostatic clip was carried out by the finite element numerical simulation method to realize the matching between the structure design and the material properties. Hot extrusion and wire cutting process was used to prepare the Mg-Zn-Ca-Y alloy operative clip. Corrosion degradation behavior of Mg-Zn-Ca-Y alloy in vitro was investigated using electrochemical noise (EN) and immersion test in Simulated body fluid (SBF). The carotid artery of SD rats was clipped using the Mg-Zn-Ca-Y operative clip to evaluate occlusion safety and the complete corrosion degradation behavior and biocompatibility of Mg-Zn-Ca-Y alloy clip in vivo were investigated using micro-computed tomography, histological analysis, and blood biochemical indicators. It was found that the newly designed Mg-Zn-Ca-Y clip can successfully ligate the carotid artery, and no blood leakage occurred after surgery. After eight months, the Mg-Zn-Ca-Y clip degraded utterly. Histological analysis and various blood biochemical parameters in SD rat serum samples collected at different time periods showed no tissue inflammation around the clips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.