Abstract

We managed to obtain three different series of 2,3-dimethyl-1,4-benzoquinones, named nonhalogenated and halogenated (brominated and chlorinated) PQ analogues, via the molecular hybridization strategy. Sixteen of eighteen hybrid molecules were selected by the National Cancer Institute (NCI) of Bethesda for their in vitro antiproliferative potential against the full NCI 60 cell line panel. The hybrid molecules (BrPQ5, CIPQ1, and CIPQ3) showed good growth inhibition at 10 μM concentration, particularly against breast cancer cell lines. As per the results obtained from in vitro antiproliferative evaluation, cytotoxic activities of the hybrid molecules (BrPQ5, CIPQ1, and CIPQ3) were evaluated with an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in T47D and MCF7 breast cancer and human umbilical vein endothelial (HUVEC) cells. Molecules exhibited cytotoxic activity, and especially, CIPQ1 showed remarkable cytotoxic activity and good selectivity on T47D and MCF7 cells. Furthermore, CIPQ1 could inhibit cell proliferation, cause apoptotic cell death and disturb the cell cycle in T47D and MCF7 cells. Additionally, CIPQ1 caused oxidative stress induction in both cells, more so in T47D. In vitro study results indicated that the anticancer activity of CIPQ1 was more prominent in T47D cells than in MCF7 cells. The compound CIPQ1 showed a prominent binding with JNK3 in silico. Thus, the obtained hybrid molecules via the molecular hybridization strategy of two important pharmacophores could be useful in the discovery of novel antiproliferative agents, and CIPQ1 could be considered a promising drug candidate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.