Abstract

Phthalates are the largest group of environmental pollutants and are considered toxicant to the endocrine system. The present study was aimed to test the effect of in utero exposure of di(2-ethylhexyl)phthalate (DEHP) on Leydig cell steroidogenesis in F1 male offspring's. Pregnant dams were oral gavaged with different doses (1, 10, and 100 mg/kg/day) of DEHP or olive oil during gestational Day 9-21. Serum testosterone (T) and estradiol (E2) levels were significantly reduced in male offspring at 60 days of age. Our results also demonstrate a coordinate, dose-dependent disruption of genes involved in steroidogenesis. The gene expression of StAR, Cyp11a1, 3β-HSD, 17β-HSD, 5α-reductase and cytochrome P450 19a1 (or) aromatase (Cyp-19) were significantly decreased. The transcription factors like steroidogenic factor-1 (SF-1) and specific protein-1 (Sp-1) showed a significant decrease in 10 and 100 mg DEHP treatment group. DNA methylation analysis using bisulfite specific-methylation PCR shows hypermethylation in the SF-1 and Sp-1 promoter regions. Further to determine whether the DEHP-induced methylation changes were associated with increased DNA methyltransferase (Dnmt) levels, we measured the expression levels of Dnmt3a, Dnmt3b, Dnmt1, and Dnmt3l using real-time PCR and Western blot method. The mRNA and protein expressions of Dnmt3a, Dnmt3b, and Dnmt1 were stimulated in 10 and 100 mg DEHP treatment groups, whereas no significant change was seen in Dnmt3l expression, suggesting that increased Dnmt3a/b, Dnmt1 may cause DNA hypermethylation in testicular Leydig cells. Overall, these data suggest that gestational exposure to DEHP affects adult testicular function via altered methylation patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.