Abstract

The Hongtoushan volcanogenic massive sulfide (VMS) deposit is the largest Archean Cu–Zn deposit in China, located in the Qingyuan greenstone belt on the northern margin of the North China Craton. The Cu–Zn mineralization was stratigraphically controlled by the interbeds (~100m in thickness) of mafic–felsic volcanic sets and overlain by banded iron layers. However, the relationship between VMS deposits and associated volcanics has not been examined. This study ultimately clarifies the times and sources of the volcanics and mineralization. Based on in situ zircon U–Pb and O isotope on VMS-hosting mafic, felsic volcanic rocks, banded and massive sulfide ores and postmineralization pegmatite vein, we considered that there were two main formation stages for the Qingyuan Cu–Zn deposits; one was exhalative-hydrothermal sedimentation and another was further Cu–Zn enriched by later hydrothermal processes. The timing of the first stage occurred at 2571±6Ma based on the magmatic zircons in the VMS-hosting mafic volcanic rocks, from which the inherited zircons also indicate the existence of 2.65–3.12Ga ancient supercrustal rocks in the Qingyuan district. A modern mantle-like δ18Ozircon value of 5.5±0.1‰ (2SD) for this volcanism was well preserved in the inherited core domains of ore samples. It suggests that the mafic volcanics was most likely sourced from partial melting of juvenile crust, e.g., TTG granites. A large-scale metamorphic or hydrothermal event is documented by the recrystallized zircons in sulfide ores. The timing is tightly constrained by the hydrothermal zircon U–Pb ages. They are 2508±4Ma for the banded ore, 2507±4Ma for the massive ore and 2508±2Ma for the postmineralization pegmatite vein. These indistinguishable ages indicate that the 2507Ma hydrothermal systems played a significant role in the upgrading of the VMS Cu–Zn orebodies. The weighted δ18O values of hydrothermal zircons show a successively increasing trend from 6.0±0.1‰ (2σ) for the banded ore, 6.6±0.2‰ (2σ) for the massive ore to 7.3±0.2‰ (2σ) for the later pegmatite vein. This variation might be induced by gradual inputting of the δ18O-rich oceanic crust and/or oceanic sediment during the hydrothermal cycling system. Considering its modern mantle-like oxygen isotope composition of 2571Ma volcanism, a submarine volcanic hydrothermal system involving mantle plumes is a preferred setting for the Neoarchean VMS Cu–Zn deposits in the Qingyuan greenstone belt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.