Abstract

In situ X-ray diffraction coupled with Rietveld refinement has been used to study CO2 capture by CaO, Ca(OH)2 and partially hydrated CaO, as a function of temperature. Phase quantification by Rietveld refinement was performed to monitor the conversion to CaCO3 and the results were compared to those derived using thermogravimetric analysis (TGA). It was found that Ca(OH)2 converted directly to 100% CaCO3 without the formation of a CaO intermediate, at ca. 600 °C. Both pure CaO and partially hydrated CaO (33.6 wt% Ca(OH)2) reached the same capture capacity, containing approximately 65 wt% CaCO3 at 800 °C. It was possible to provide direct evidence of the capture mechanism. The stresses in the Ca(OH)2 phase of the partially hydrated CaO were found to be more than 20 times higher than its strength, leading to disintegration and the generation of nano-sized crystallites. The crystallite size determined using diffraction (75 × 16 nm) was in good agreement with the average crystallite size observed using TEM (of 83 × 16 nm). Electron diffraction patterns confirmed coexistence of CaO and Ca(OH)2. The analysis provides an explanation of the enhanced capture/disintegration observed in CaO in the presence of steam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.