Abstract

Self-sustained oscillations in the propane oxidation over a nickel foil were studied in situ with the use of ambient-pressure X-ray photoelectron spectroscopy (XPS) coupled with on-line mass-spectrometry and gas chromatography (GC). Regular oscillations of a relaxation type were observed at 0.5mbar in the temperature range of 600–750°C in oxygen-deficient conditions. CO, CO2, H2, H2O, and propylene were detected as products. CO selectivity in active half-periods achieved 98% decreasing to 40–60% in inactive half-periods. It has been found that the chemical state of the catalyst drastically changes together with the oscillations of the catalytic activity. According to the Ni2p and O1s core-level spectra measured in situ, the active catalyst surface is represented by metallic nickel, whereas it is covered with a layer of NiO with a thickness of at least 3nm during the inactive half-periods. It means that the oscillations in the propane oxidation over nickel are originated from the reversible bulk oxidation of Ni to NiO. We suggest that the propane oxidation over the metallic Ni surface occurs via the Langmuir–Hinshelwood mechanism, whereas the Mars–van Krevelen mechanism prevails when the reaction proceeds over NiO. The switching between the metallic surface and the oxide shows a significant change in the catalytic activity. According to GC measurements the activity of metallic nickel is approximately 40-fold higher than that of NiO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.