Abstract

Lithium-ion battery (LIB) is a broadly adopted technology for energy storage. With increasing demands to improve the rate capability, cyclability, energy density, safety, and cost efficiency, it is crucial to establish an in-depth understanding of the detailed structural evolution and cell-degradation mechanisms during battery operation. Here, we present a laboratory-based high-resolution and high-throughput X-ray micro-computed laminography approach, which is capable of in situ visualizing of an industry-relevant lithium-ion (Li-ion) pouch cell with superior detection fidelity, resolution, and reliability. This technique enables imaging of the pouch cell at a spatial resolution of 0.5 μm in a laboratory system and permits the identification of submicron features within cathode and anode electrodes. We also demonstrate direct visualization of the lithium plating in the imaged pouch cell, which is an important phenomenon relevant to battery fast charging and low-temperature cycling. Our development presents an avenue toward a thorough understanding of the correlation among multiscale structures, chemomechanical degradation, and electrochemical behavior of industry-scale battery pouch cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.