Abstract

Protein translation has been implicated in different forms of synaptic plasticity but direct in situ visualization of new proteins is limited to one or two proteins at a time. Here we describe a metabolic labeling approach based upon incorporation of non-canonical amino acids into proteins followed by chemo–selective fluorescent tagging via click chemistry. Following brief incubation with azidohomoalanine or homopropargylglycine, a robust fluorescent signal was detected in somata and dendrites. Pulse–chase–like application of azidohomoalanine and homopropargylglycine allowed visualization of proteins synthesized in two sequential time periods. This technique can be used to detect changes in protein synthesis and to evaluate the fate of proteins synthesized in different cellular compartments. Moreover, using strain–promoted cycloaddition, we explored the dynamics of newly synthesized membrane proteins using single particle tracking and quantum dots. The newly synthesized proteins exhibited a broad range of diffusive behaviors as expected if the pool of labeled proteins was heterogeneous.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.