Abstract

In this work, the titanium germanosilicide (TiSiGex) superlattice (SL) has been successfully fabricated. A monolayer of silicon atoms and bilayer of inversed titanium silicide constructed this novel superlattice periodically. A localized strain field has been found as a crucial factor via high resolution Annular Dark Field Scanning Transmission Electron Microscope (ADF-STEM) images, being generated by gradual segregation of germanium atoms. Germanium atoms would be excluded during the formation of the transition silicide. This phenomenon could be interpreted by thermodynamic preference. There was a substitution reaction between silicon and germanium, resulting from similar atomic volumes of both. In other words, germanium segregation pathway was based on where substitution occurred. Eventually, the excluded germanium atoms tended to accumulate at the boundary of TiSiGex-SL, contributing to a discontinuous thin film layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.