Abstract

AbstractIn situ toughened B12(C, Si, B)3–SiC ceramics were successfully fabricated via the liquid silicon infiltration process. Two types of B12(C, Si, B)3 phases, with high and low Si contents, respectively, and plate‐like SiC particles were formed by the reaction between B4C and Si. The in situ toughening mechanism involved two effects: the multiple crack deflections caused by the increased grain boundaries, and the pullout and rupture of a significant amount of plate‐like SiC particles. Block ceramics with a high fracture toughness of 6.5 ± 0.5 MPa·m1/2 were fabricated via the in situ toughening mechanism. A strong interface bond was present between the high‐ and low‐B4C‐content layers in the laminated ceramics, which led to residual compressive stress inside the materials. As a result, the laminated structural design enhanced the fracture toughness to 7.5 ± 0.5 MPa·m1/2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.