Abstract

A new magnetic nanocomposite called MIL-100(Fe) @Fe3O4@AC was synthesized by the hydrothermal method as a stable adsorbent for the removal of Rhodamine B (RhB) dye from aqueous medium. In this work, in order to increase the carbon uptake capacity, magnetic carbon was first synthesized and then the Fe3O4 was used as the iron (III) supplier to synthesize MIL-100(Fe). The size of these nanocomposite is about 30–50 nm. Compared with activated charcoal (AC) and magnetic activated charcoal (Fe3O4@AC) nanoparticles, the surface area of MIL-100(Fe) @Fe3O4@AC were eminently increased while the magnetic property of this adsorbent was decreased. The surface area of AC, Fe3O4@AC, and MIL-100(Fe) @Fe3O4@AC was 121, 351, and 620 m2/g, respectively. The magnetic and thermal property, chemical structure, and morphology of the MIL-100(Fe) @Fe3O4@AC were considered by vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), zeta potential, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Brunner-Emmet-Teller (BET), and transmission electron microscopy (TEM) analyses. The relatively high adsorption capacity was obtained at about 769.23 mg/g compared to other adsorbents to eliminate RhB dye from the aqueous solution within 40 min. Studies of adsorption kinetics and isotherms showed that RhB adsorption conformed the Langmuir isotherm model and the pseudo second-order kinetic model. Thermodynamic amounts depicted that the RhB adsorption was spontaneous and exothermic process. In addition, the obtained nanocomposite exhibited good reusability after several cycles. All experimental results showed that MIL-100(Fe) @Fe3O4@AC could be a prospective sorbent for the treatment of dye wastewater.

Highlights

  • A variety of different synthetic dyes are produced daily worldwide for use in the textile, paper, and printing industries [1,2]

  • The values of k in the pseudo-second-order model are much smaller than the other two models. These results indicate that the Rhodamine B (RhB) adsorption on MIL-100(Fe) @Fe3O4@activated charcoal (AC) conformed with the pseudo-second-order model

  • The magnetic nanocomposite MIL-100(Fe) @Fe3O4@AC was first synthesized with the average crystal size of −50 nm using hydrothermal method for removal RhB

Read more

Summary

Introduction

A variety of different synthetic dyes are produced daily worldwide for use in the textile, paper, and printing industries [1,2]. The wastewater of these industries is one of the most harmful waste products due to chemicals, suspended matter, toxic compounds, and colorants [3,4]. Rhodamin B (RhB) is a recalcitrant and cationic xanthenic dye; Due to the carcinogenic nature, the use of RhB was prohibited It is often used as a colorant in the dyeing industries, food industries, and in biomedical laboratories as biological strain [9,10,11,12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.