Abstract
In the electro-Fenton process, one of the important challenges is to adjust the pH of the environment in the acidic region so that the system's performance is not affected by side reactions. In this case, it will be necessary to neutralize the solution after the process. One of the solutions is to use a heterogeneous catalyst to widen the pH range. However, recovering the used catalyst itself can be another challenge. Modifying the electrode using electroactive materials can answer both of these challenges. This work modified the bare graphite-felt (GF) electrode using zeolitic imidazolate frameworks (ZIF)-derived carbon material doped with Co and Zn through a rapid, room-temperature, and water-based synthesis method. Various analyses, including XRD, SEM, XPS, and LSV, confirmed the proper modification of bare GF carbon fibers. The modified Co/Zn-N-C@GF electrode showed good performance in removing rifampicin (RFP) during the electro-Fenton process, so about 90 % of the pollutant was removed within 30 min without adding a homo-/heterogeneous catalyst. Optimum conditions for this process were 1.0 V for applied voltage, 40 mg/L for initial concentration of RFP, and 5.6 for pH. Also, LC-MS analysis was performed to confirm the degradation of RFP and investigate its degradation pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.