Abstract

Bacterial cellulose (BC), with unique structure and properties, has attracted much attention in the biomedical field, especially in using as wound dressing. However, pure BC lacks the antimicrobial activity, which limits its application in wound healing. To solve this problem, copper nanoparticles (Cu NPs) loaded BC membranes were fabricated by using in situ chemical reduction method. The morphology and chemical composition of the composite membranes were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA). The results showed that Cu NPs evenly distributed and anchored in the three-dimensional (3-D) nanofiber network of BC through physical bonding. Traces of Cu2O were observed on the membranes probably because the Cu2+ was incompletely reduced. The Cu NPs loaded BC membranes showed efficient long-term antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) even after immersion in deionized water for up to 90 days. The composite membranes kept sustained release of copper ion, which may contribute to the long-term antibacterial activity. Furthermore, with controlled Cu concentration, BC/Cu membranes did not show obvious cytotoxicity to normal human dermal fibroblasts (NHDF). In all, the present results reveal that BC/Cu membranes with efficient antibacterial activity are promising to be used as wound dressings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.