Abstract

Lithium pre-doping of graphite anode is a key process to achieve high energy density lithium-ion capacitor. In this study, in situ synchrotron wide-angle X-ray scattering examinations directly revealed that the direct contact (DC) method, simply achieved through direct physical contact between graphite electrode and sacrificial lithium metal in electrolyte, provides much faster phase transformation from stage 1ʹ to stage 1 than conventional electronic charger (EC) and external short circuit (ESC) methods at the same doping time level. The observations indicate that DC method achieves faster pre-lithiation rate of graphite electrode than EC and ESC processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.