Abstract

Massive ethanol production has long been a dream of human society. Despite extensive research in past decades, only a few systems have the potential of industrialization: specifically, Mn-promoted Rh (MnRh) binary heterogeneous catalysts were shown to achieve up to 60% C2 oxygenates selectivity in converting syngas (CO/H2) to ethanol. However, the active site of the binary system has remained poorly characterized. Here, large-scale machine-learning global optimization is utilized to identify the most stable Mn phases on Rh metal surfaces under reaction conditions by exploring millions of likely structures. We demonstrate that Mn prefers the subsurface sites of Rh metal surfaces and is able to emerge onto the surface forming MnRh surface alloy once the oxidative O/OH adsorbates are present. Our machine-learning-based transition state exploration further helps to resolve automatedly the whole reaction network, including 74 elementary reactions on various MnRh surface sites, and reveals that the Mn-Mn dimeric site at the monatomic step edge is the true active site for C2 oxygenate formation. The turnover frequency of the C2 product on the Mn-Mn dimeric site at MnRh steps is at least 107 higher than that on pure Rh steps from our microkinetic simulations, with the selectivity to the C2 product being 52% at 523 K. Our results demonstrate the key catalytic role of Mn-Mn dimeric sites in allowing C-O bond cleavage and facilitating the hydrogenation of O-terminating C2 intermediates, and rule out Rh metal by itself as the active site for CO hydrogenation to C2 oxygenates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.