Abstract

The growth development of nanometer thick Mo and Si layers was studied using in situ laser deflection and Low Energy Ion Scattering (LEIS). The growth stress obtained from changes in wafer curvature during growth is correlated to changes in the surface stochiometry monitored by LEIS. For Si on Mo, the compressive-tensile-compressive stress development could be explained by the formation of interfacial silicide compounds and the transition between these and the bulk growth of Si. For Mo on Si, a strong initial tensile stress due to silicide formation saturates upon reduced availability of free Si at the growing Mo surface, followed by a near instantaneous tensile increase in stress related to the amorphous-to-crystalline phase transition, which coincides with the end of the compound formation, as determined with LEIS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.