Abstract

Graphene oxide (GO) was prepared by using the natural graphite as raw materials via the modified Hummers' method and ultrasonic stripping method. GO was reduced online after its anchoring on the surface of polyurethane sponges by a dip-coating method, then in situ reduced graphene oxide-based polyurethane (IRGOPU) sponges were fabricated. The characterizations of IRGOPU sponges were investigated using Field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and contact angle measurement. The IRGOPU sponges had an adsorption capacity for a broad range of oils up to 21.7~55g/g. A simulation experiment of large-scale oil spill using a simple IRGOPU sponge hollow tube component was designed. The process of continuous oil removal from water surface was quick and effective, and the oil/water separation efficiency could be up to 99.6%. The results indicated that the IRGOPU sponge hollow tube may be an optimum candidate for the oil/water separation of large-scale oil spill.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.