Abstract

AbstractBlends of polypropylene (PP) and epoxidized natural rubber (ENR) were prepared by an in‐line electron induced reactive processing technique. The mixing was done in a Brabender mixing chamber coupled with an electron accelerator. The effect of sequence of electron treatment on the compatibilization of non‐polar PP and polar ENR was investigated in the presence of triallyl cyanurate (TAC). Finally, the resulting blends were characterized by different techniques, namely, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), tensile tests, and rheological studies. Generation of phase coupling and chemical compatibilization were observed from FTIR analysis. DMA studies showed enhanced high‐temperature modulus (above the glass transition temperature of both components) followed up by lowering in the tan δ peak. Rheological studies showed increase in modulus at low frequencies. Electron treatment and incorporation of rubber phase into PP showed significant effect on the degree of crystallinity of the blends, which was characterized by DSC study. The results obtained from FTIR, DMA, SEM, rheological studies, and tensile tests strongly affirmed that electron induced reactive processing of PP in presence of TAC before adding of ENR performed the best amongst all samples modified with electrons investigated in this study. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.