Abstract

The electro-Fenton (EF) process is an advanced oxidation technology with significant potential; however, it is limited by two steps: generation and activation of H2O2. In contrast to the production of H2O2 via the electrochemical two-electron oxygen reduction reaction (ORR), the electrochemical three-electron (3e-) ORR can directly activate molecular oxygen to yield the hydroxyl radical (⋅OH), thus breaking through the conceptual and operational limitations of the traditional EF reaction. Therefore, the 3e- ORR is a vital process for efficiently producing ⋅OH in situ, thus charting a new path toward the development of green water-treatment technologies. This review summarizes the characteristics and mechanisms of the 3e- ORR, focusing on the basic principles and latest progress in the in situ generation and efficient utilization of ⋅OH through the modulation of the reaction pathway, shedding light on the rational design of 3e- ORR catalysts, mechanistic exploration, and practical applications for water treatment. Finally, the future developments and challenges of efficient, stable, and large-scale utilization of ⋅OH are discussed based on achieving optimal 3e- ORR regulation and the potential to combine it with other technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.