Abstract

Solid polymer electrolytes (SPEs) represent a pivotal advance toward high-energy solid-state lithium metal batteries. However, inadequate interfacial contact remains a significant bottleneck, impeding scalability and application. Inadequate interfacial contact remains a significant bottleneck, impeding scalability and application. Recent efforts have focused on transforming liquid/solid interfaces into solid/solid ones through in situ polymerization, which shows potential especially in reducing interface impedance. Here, we designed high-voltage SSLMBs with dual-reinforced stable interfaces by combining interface modification with an in situ polymerization technology inspired by targeted effects in medicine. Theoretical calculations and time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis demonstrate that tetramethylene sulfone (TMS) and bis(2,2,2-trifluoromethyl) carbonate (TFEC) exhibit selective adsorption at the interface of the LiNi0.8Co0.1Mn0.1O2 (NCM) cathode and Li anode, respectively. These compounds further decompose to form a stable cathode-electrolyte interface (CEI) film and a solid electrolyte interface (SEI) film, thereby simultaneously achieving a superior interface between the SPE and both the Li anode and NCM cathode. The developed Li||SPE||Li cell sustained cycling for more than 1000 h at 0.3 mA cm-2, and the NCM||SPE||Li cell also demonstrated an excellent capacity retention of 86.8% after 1000 cycles at 1 °C. This work will provide valuable insights for the rational design of high-voltage SSLMBs with stable interfaces, leveraging in situ polymerization as a cornerstone technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.