Abstract

It is well known that reduced graphene oxide/polyaniline (rGO/PANI) composites exhibit extremely excellent electrochemical performance. However, in the preparation of this composite, the toxic and harmful properties of the reducing agent and the re-stacking of rGO sheets have become an obstacle. To solve these problems, in this study, with green natural tea polyphenols (GTPs) was used as the reducing agent and stabilizer of graphene oxide (TrGO), through introduced amine groups into the surface of TrGO by Mannich reaction acted as anchors for in-situ polymerization of polyaniline (PANI), we synthesized a high-electrochemical performance TrGO/PANI composites. Fourier Transform Infrared Spectrometer (FT-IR), X-ray diffraction, Raman spectra and electron microscope were used to characterize the morphology and structure of the composite, and the electrochemical performance of the composite were tested by cyclic voltammetry, galvanostatic charge-discharge and AC impedance spectroscopy. The results exhibited that the covalently grafted TrGO/PANI composites showed excellent electrochemical performance. The areal capacitance at 0.5 mA cm−2 is 732 mF cm−2, which is better than pristine graphene oxide and polyaniline. The excellent electrochemical performance of the composites can be attributed to the effect of covalent synergy between the TrGO and PANI, indicating the great potential for supercapacitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.