Abstract
The in situ metalorganic chemical vapor deposition (MOCVD) growth of Al2O3 dielectrics on β-Ga2O3 and β-(AlxGa1−x)2O3 films is investigated as a function of crystal orientations and Al compositions of β-(AlxGa1−x)2O3 films. The interface and film qualities of Al2O3 dielectrics are evaluated by high-resolution x-ray diffraction and scanning transmission electron microscopy imaging, which indicate the growth of high-quality amorphous Al2O3 dielectrics with abrupt interfaces on (010), (100), and (2¯01) oriented β-(AlxGa1−x)2O3 films. The surface stoichiometries of Al2O3 deposited on all orientations of β-(AlxGa1−x)2O3 are found to be well maintained with a bandgap energy of 6.91 eV as evaluated by high-resolution x-ray photoelectron spectroscopy, which is consistent with the atomic layer deposited (ALD) Al2O3 dielectrics. The evolution of band offsets at both in situ MOCVD and ex situ ALD deposited Al2O3/β-(AlxGa1−x)2O3 is determined as a function of Al composition, indicating the influence of the deposition method, orientation, and Al composition of β-(AlxGa1−x)2O3 films on resulting band alignments. Type II band alignments are determined at the MOCVD grown Al2O3/β-(AlxGa1−x)2O3 interfaces for the (010) and (100) orientations, whereas type I band alignments with relatively low conduction band offsets are observed along the (2¯01) orientation. The results from this study on MOCVD growth and band offsets of amorphous Al2O3 deposited on differently oriented β-Ga2O3 and β-(AlxGa1−x)2O3 films will potentially contribute to the design and fabrication of future high-performance β-Ga2O3 and β-(AlxGa1−x)2O3 based transistors using MOCVD in situ deposited Al2O3 as a gate dielectric.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.