Abstract

The local vibrational mode analysis developed by Konkoli and Cremer has been successfully applied to characterize the intrinsic bond strength via local bond stretching force constants in molecular systems. A wealth of new insights into covalent bonding and weak chemical interactions ranging from hydrogen, halogen, pnicogen, and chalcogen to tetrel bonding has been obtained. In this work we extend the local vibrational mode analysis to periodic systems, i.e. crystals, allowing for the first time a quantitative in situ measure of bond strength in the extended systems of one, two, and three dimensions. We present the study of one-dimensional polyacetylene and hydrogen fluoride chains and two-dimensional layers of graphene, water, and melamine-cyanurate as well as three-dimensional ice I h and crystalline acetone. Besides serving as a new powerful tool for the analysis of bonding in crystals, a systematic comparison of the intrinsic bond strength in periodic systems and that in isolated molecules becomes possible, providing new details into structure and bonding changes upon crystallization. The potential application for the analysis of solid-state vibrational spectra will be discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.