Abstract

The strain response of WC and Ni in WC–Ni cemented carbide composites (5, 10 and 20 wt.% Ni) was studied under uniaxial compressive load to −2000 MPa using neutron diffraction. Measurements of elastic strain were made simultaneously in the axial and transverse directions of the samples, for both phases. Thermal residual stresses (TRS) were also measured, before and after loading. Ni plasticity was observed from the earliest load levels. The superposition of tensile Poisson strain (in the transverse direction) on pre-existing tensile Ni strain due to TRS produces anisotropic yielding in binder regions. Yielding is progressive with applied strain, leading to a reversal of transverse binder strain, and anisotropic relaxation of the TRS. The effect is greatest for 20 wt.% Ni, where Ni constraint is much less than for 5 wt.% Ni. These results provide a quantitative basis for the mechanical origins of the toughness of cemented carbide composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.