Abstract

Whether it be the mechanical response of biomaterials or the crack propagation pathways within metal alloys, observing how damage occurs (both spatially and temporally) is critical to understanding materials behavior. Here, nanoscale transmission X-ray microscopy (TXRM) is used to follow the initiation and propagation of damage during quasi-static mechanical testing of natural, crystalline, and metallic materials. The coupling of a novel load stage and TXRM for in situ mechanical testing enables both radiographic (2D) and tomographic (3D) characterization. With an imaging resolution down to 50 nm during uniaxial nanoindentation, compression, or tension, TXRM is ideally suited for the characterization of materials degradation. Several applications are demonstrated including nanoindentation of dentin, compression of a single crystal of high explosive, and tensile testing of both beetle cuticle and Al-Cu alloy. These experiments highlight the capability of the new experimental fixture to provide enhanced insight on material performance through four dimensional (3D + time) observation and analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.