Abstract

A facile approach to synthesize a hybrid polymeric composite with ultra-high volumetric capacitance by incorporating waste coconut shell derived activated carbon (AC) and rare-earth metal oxide (Eu2O3) into the polypyrrole (PPY) matrix has been reported in this work. The composite is synthesized via in situ oxidative polymerization. The PPY/AC/Eu2O3 composite stores energy both Faradaically and electrostatically. Further, the electrochemical performance gets augmented with the incorporation of rare earth metal oxide Eu2O3 owing to the availability of multiple valence states and development of stronger interaction with PPY which a good electron donor in turn leading to easy protonation of PPY. The as-prepared composites exhibit a highest gravimetric capacitance 670Fg−1 and an outstanding volumetric capacitance 1090Fcm−3 at the current density of 1Ag−1. Also, the composite with the maximum volumetric capacitance exhibits a high-power density of 4108WL−1 with the maximum energy density of 37.85Wh L−1 at the current density of 1Ag−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.