Abstract

AbstractLow interfacial ion transfer kinetics and structure instability of solid‐state electrolytes are the bottleneck which seriously limits the working life and energy density of flexible zinc–air batteries (ZABs). Herein, an optimized electrode–electrolyte integrated MXene/Zn‐layered double hydroxides (LDH)‐array@PVA structure is developed via an electrochemical Zn deposition, in situ LDH growth, polymer infiltration, and crosslinking route, integrating anode and gel polymer electrolyte (GPE) for high‐performance flexible ZABs. The highly orientated hydrophilic CoNi‐LDH arrays sufficiently crosslink with poly(vinyl alcohol) (PVA) chains, which effectively decreases the crystallinity degree of the PVA polymer and provides fast ionic diffusion channels to reduce the ionic transport barrier, endowing LDH‐array@PVA GPE with significantly improved ionic conductivity, water retention capability, and mechanical flexibility. Moreover, the optimized anode‐GPE integrated interface of MXene/Zn‐LDH‐array@PVA demonstrates excellent interfacial compatibility and stability, effectively reduces the interfacial impedance, and promotes the interfacial ionic transfer kinetics, enhancing a uniform zinc deposition without dendrite formation. The optimized ionic transfer kinetics and stable anode‐GPE integrated interface bring the MXene/Zn‐LDH‐array@PVA‐based flexible ZAB a long cycling life up to 50 h, and a high power density of 92.3 mW cm−2. The rationally designed in situ crosslinking and integration strategies provide enlightening pathways for the design of high‐performance flexible ZABs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.