Abstract

Nano-/microcrystalline copper is widely used in catalysts, and it has potential for being used as conductive additive to ink for inkjet printed electronics. Copper is attractive, because it has excellent electrical conductivity and low cost compared to noble metals. The nucleation and phase transitions from the precursor to the final micrometer sized Cu in supercritical methanol have been studied for the first time using in-house in situ powder X-ray diffraction (PXRD). Temperatures have a significant impact on the reduction process of Cu2+; at a low synthesis temperature (250 °C), it was observed how the Cu2+ precursor initially formed copper hydroxy nitrate (Cu2(OH)3NO3) and transformed to copper(II)oxide (CuO), i.e., no reduction took place. At 300 °C, multiple phase transformation could be observed from initial copper hydroxy nitrate to zerovalent copper; the in situ investigations reveal the following phase transitions; CuII2(OH)3NO3 → CuIIO → CuI2O → Cu0. Increasing the synthesis temperature causes ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.