Abstract

Catalytic hydrogenation reduction based on sodium borohydride (NaBH4) has gained attention as an appealing "one-stone-two-birds" approach for the simultaneous elimination of nitroaromatic pollutants and the production of high-value aminoaromatics under mild conditions. However, the slow kinetics of NaBH4 dissociation on the surface of catalysts restrict the catalytic hydrogenation reduction efficiency. Herein, we report an intelligent localized sulfidation strategy for an in situ implantation of Bi2S3 nanorods within quasi-Bi-MOF architectures (Bi2S3@quasi-Bi-MOF) by fine-tuning the pyrolysis temperature. In this novel Bi2S3@quasi-Bi-MOF, the porous quasi-Bi-MOF enables efficient adsorption of BH4- and 4-nitrophenol (4-NP), while Bi2S3 facilitates the BH4- dissociation to form Hads* species adsorbed on the catalyst surface. Benefiting from the synergistic structure, Bi2S3@quasi-Bi-MOF exhibits excellent performance for the catalytic reduction of 4-NP, delivering a high turnover frequency (TOF) of 1.67 × 10-4 mmol mg-1 min-1 and an extremely high normalized rate constant (knor) of 435298 s-1 g-1. The kinetic analysis and electrochemical tests indicate that this catalytic hydrogenation reduction follows the Langmuir-Hinshelwood mechanism. This study enriches the synthetic strategy of MOF-based derivatives and offers a new catalytic platform for hydrogenation reduction reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.