Abstract

The hypothesis that RNA played a significant role in the origin of life requires effective and efficient abiotic pathways to produce RNA oligomers. The most successful abiotic oligomerization reactions to date have utilized high-energy, modified, or pre-activated ribonucleotides to generate strands of RNA up to 50-mers in length. In spite of their success, these modifications and pre-activation reactions significantly alter the ribonucleotides in ways that are highly unlikely to have occurred on a prebiotic Earth. This research seeks to address this problem by exploring an aqueous based method for activating the canonical ribonucleotides in situ using 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and imidazole. The reactions were run with and without a montmorillonite clay catalyst and compared to reactions that used ribonucleotides that were pre-activated with imidazole. The effects of pH and ribonucleotide concentration were also investigated. The results demonstrate the ability of in situ activation of ribonucleotides to generate linear RNA oligomers in solution, providing an alternative route to produce RNA for use in prebiotic Earth scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.