Abstract

A non-contact strain measurement technique, based on an in-situ digital image correlation (DIC) method in association with magnetic martensite point measurement (Feritoscopy testing) was applied to study inhomogeneous deformation corresponding to martensitic transformation of a microalloyed low carbon transformation induced plasticity steel during tensile straining. The progress of inhomogeneous deformation is traced by the strain maps. The microstructural observation is used to validate the DIC results. The experimental steel shows continuous yielding with a high true fracture strength of 1410±10MPa at 25°C along with the lack of tensile necking. The DIC results show that the yield point is controlled by stress-assisted martensite transformation, which in turn induces the strain inhomogeneity. The latter starts prior to the yield point after straining to 0.016. The microstructural evolution reveals the ε-martensite is obtained through stress-assisted martensite formation. After yielding, thanks to the strain-induced martensite transformation, the deformation inhomogeneity in strain maps is increased with strain, corresponding to increasing the volume fraction of martensite. The results suggest that the continuous yielding and initial strain hardening is controlled by stress-assisted martensite formation while the higher total elongation to fracture (80%) and the tensile necking behavior is mainly influenced by the strain-induced martensite transformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.