Abstract

Electrochemical advanced oxidation processes (EAOPs) are effective for the removal of organic contaminants from groundwater. The choice of an affordable cathode material that can generate reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and hydroxyl radicals (•OH) will increase practicality and cost effectiveness of EAOPs. Carbon enriched biochar (BC), which is derived from pyrolysis of biomass, has emerged as an inexpensive and environmentally-friendly electrocatalyst for removing contaminants from groundwater. In this study, a banana peel-derived biochar (BP-BC) cathode packed in a stainless steel (SS) mesh was used in a continuous flow reactor to degrade the ibuprofen (IBP), as a model contaminant. The BP-BC cathodes generate H2O2 via a 2-electron oxygen reduction reaction, initiate the H2O2 decomposition to generate •OH, adsorb IBP from contaminated water, and oxidize IBP by formed •OH. Various reaction parameters such as pyrolysis temperature and time, BP mass, current, and flow rate, were optimized to maximize IBP removal. Initial experiments showed that H2O2 generation was limited (∼3.4 mg mL−1), resulting in only ∼ 40% IBP degradation, due to insufficient surface functionalities on the BP-BC surface. The addition of persulfate (PS) into the continuous flow system significantly improves the IBP removal efficiency via PS activation. The in-situ H2O2 formation and PS activation over BP-BC cathode results in concurrent generation of •OH and sulfate anion radicals (SO4•−, a reactive oxidant), respectively, which collectively achieve ∼ 100% IBP degradation. Further experiments with methanol and tertiary butanol as potential scavengers for •OH and SO4•− confirm their combined role in complete IBP degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.