Abstract

Stability of the photocatalyst, maximum solar energy harvesting and effective photogenerated charge carrier separation are yet demanding key features of the photocatalysis for pollutant abetment and photo-electrochemical applications. Herein, we report the in situ solvothermal synthesis of CdS–Bi2MoO6 core-shell heterostructures (CdS–Bi2MoO6 CSHs) for the photocatalytic elimination of methyl orange (MO) under visible light. The as-synthesized CdS–Bi2MoO6 CSHs exhibited highest photocatalytic performance of 98.5%, which is approximately 10 and 4 folds higher than pristine Bi2MoO6 nanosheets (NSs) and CdS nanorods (NRs), respectively. This significantly enhanced photocatalytic performance is attributed to the core-shell heterostructure that improves the visible-light harvesting ability, facilitates efficient separation and transfer of the photogenerated charge carriers, as well as synergistic band alignment of both CdS NRs and Bi2MoO6 NSs. The CdS–Bi2MoO6 CSHs also showed efficient photocatalytic performance toward methylene blue (MB) as colored dye and tetracycline hydrochloride (TCH) as a colorless emerging contaminant. Additionally, the outcomes of transient photocurrent, electrochemical impedance, and photoluminescence study further corroborate that the construction of core-shell heterostructures with tight contact, leading to effective charge carrier separation. The hole (h+) and superoxide radical anion (•O2−) were determined to be the predominant active species accountable for the MO dye degradation. Furthermore, the CdS–Bi2MoO6 CSHs exhibited a satisfactory recycling efficiency over five cycles (reduced by approximately 6%), owing to the protective Bi2MoO6 NSs shell over the CdS NRs core, demonstrating their applicability in wastewater purification and photo-electrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.