Abstract

In situ gamma spectrometry using high-purity germanium (HPGe) detectors is a frequently used method for the determination of radionuclide ground deposition levels. Such measurements do, however, require an efficiency calibration based on detector sensitivity and parameters such as soil density and vertical activity distribution. In this work, a novel expression is used for the detector efficiency, incorporating both the influence of photon energy and incidence angle. Detector-specific efficiency data are determined empirically. For the theoretical calculation of the photon fluence at the detector, a three-layer model of finite thickness is developed for the description of soil density and vertical activity distribution. In order to facilitate the calibration of in situ measurements, a PC program has been developed to enable rapid, on-site calculations of radionuclide ground deposition levels. The semi empirical calibration method was tested on in situ measurements with two different detectors, and the results show good agreement with results obtained from traditional soil sampling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.