Abstract

The presence of a conducting metal surface is known to affect the emission of a fluorophore in its proximity. This can lead to an enhancement in its fluorescence intensity along with a decrease in the fluorescence lifetime. This phenomenon, sometimes known as metal enhanced fluorescence, has implications in the area of sensing and "lab on a chip" applications. Here controlled, localised use of metallic structures can be advantageous in enhancing the detection of a fluorescent signal. The sol-gel technique has been demonstrated as a useful method by which to produce a biocompatible material. The versatility of the reaction allows for the inclusion of metal ions, which can form metallic nanostructures permitting the potential enhancement of fluorescence to be exhibited. In this work we incorporate silver nitrate within silica sol-gel derived films produced using a simple procedure at relative low temperatures (close to ambient). A compact time-resolved fluorescence microscope equipped with a semiconductor laser was used to photoactivate the silver ions to form localised metallic structures within the films. Patterning was achieved by computer control of the microscope stage and using the laser in CW mode. The films were characterised using AFM and UV-vis spectroscopy to ascertain the presence of the photoactivated silver nanostructures. The effect of the presence of these structures was elucidated by studying the time-resolved fluorescence of FITC labelled bovine serum albumin adsorbed to the films, where a decrease in the lifetime of the FITC label was observed in the location of the nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.