Abstract

AbstractThe synthesis of several newly available diacrylate crosslinking agents derived from hydroxy functional acrylates and bisepoxides is described. These crosslinking agents are synthesized via the acid catalyzed addition of hydroxyl‐containing acrylate monomers to bisepoxides derived from bisphenol‐A and its hexafluoropropyl analog. These materials are generated in an excess of the acrylate monomer and the reaction mixtures are then converted directly to highly crosslinked materials. The alcohol functional monomers include hydroxyethyl methacrylate (HEMA) and the butyl and ethyl esters of (α‐hydroxymethyl)acrylic acid. The latter are especially interesting for several reasons. First, they are readily available through the addition of the corresponding acrylate to formaldehyde. Second, these monomers react with the bisepoxides to give all‐ether‐linked connecting groups, in conrast to HEMA which yields a molecule with both ether and ester linkages between the two acrylate units. Third, the monomers are very different in solubility from HEMA and the polymers display very different chemical and physical properties. For example, while the crosslinked HEMA polymers are swellable in water, those of the (α‐hydroxymethyl)acrylates are insoluble in water but swellable in organic solvents such as chloroform. All monomers, crosslinking agents, and crosslinked polymers were characterized by FT‐IR, solution or solid state 13C‐NMR spectroscopy, and thermal analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.