Abstract

This works investigates the in-situ formation of MoS2 and WS2 tribofilms by the synergy between transition metal oxide nanoparticles and conventional sulphur-containing anti-wear and extreme pressure additives. The formation of these low friction tribofilms can be obtained under reciprocating sliding contact and under extreme pressure conditions, as evidenced using X-ray photoelectron spectroscopy. Under reciprocating sliding conditions, the synergy between transition metal oxide nanoparticles and the ZDDP leads to coefficients of friction around 0.06 before they rise as consequence of oxidation. The synergy is more outstanding in extreme pressure conditions, particularly for MoO3 nanotubes combined with extreme pressure additive. This combination outperforms base oil mixtures containing EP additive or MoS2 nanotubes. While MoS2 nanotubes build superb extreme pressure tribofilms containing iron and molybdenum oxides and sulphides, MoO3 nanotubes are able to build similar tribofilms that can continuously re-sulphurize in the presence of the extreme pressure additive. Despite having a similar chemistry, MoO3 nanotubes are observed to sulphurize more easily when compared to WO3 nanoparticles. The work highlights the tribological potential of these nanoparticles otherwise typically used as precursors for the synthesis of transition metal dichalcogenide nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.