Abstract

Due to the enormous interest in plants related to bioscience, environmental and toxicological research, analytical methods are expected with the ability of getting information on elemental transfer, distribution and contents in plants. In this work, a mixture of gelatin (GA) and hydroxypropyl methyl cellulose (HPMC) was prepared to simulate plant matrix, a method based on laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with matrix-matching external calibration was proposed for direct quantification of multiple elements in plants. The composition of GA&HPMC substrate was optimized, such as the concentration of spiked nitric acid, the mass fraction of both GA and HPMC in the substrate and the mass ratio of GA: HPMC. After spiking elemental solution, coating the mixture onto a glass slide and drying overnight at room temperature, GA&HPMC substrate was obtained. The substrate obtained with GA: HPMC of 8: 2 was used to fabricate the standard series, which exhibited good elemental homogeneity and similar elemental signal intensities in LA-ICP-MS detection to that obtained for plant Certified Reference Material (CRM). CRMs of different plants including Citrus leaf (GBW10019), Tea (GBW07605), Beans (GBW10021) and Scallions (GBW10049) were further pressed into pellets and subjected to the proposed method, and the quantification accuracy was demonstrated. The limits of detections of this method were found to be 0.003 (Ce)-104 (Ca) μg g−1, with a wide linear range (0.01–10000 μg g−1) for 17 target elements. The application potential of the method was further demonstrated by performing elemental imaging in Trigonotis peduncularis leaves. Rapid in-situ quantitative imaging of Zn, Cu, Sr and Mn was achieved, and the elemental quantitative distributions were discussed. The constructed substrate helped direct elemental quantification in plants. It provided a powerful and efficient tool for the investigation of the distribution and transfer of elements in plants, favoring further exploration of elemental bioavailability, transport and toxicity mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.